Involvement of cAMP-dependent protein kinase in mu-opioid modulation of NMDA-mediated synaptic currents.

نویسندگان

  • C W Xie
  • D V Lewis
چکیده

We have previously reported dual effects of mu-opioids on N-methyl-D-aspartate (NMDA)-receptor-mediated synaptic events in the hippocampal dentate gyrus: an indirect facilitating effect via suppression of GABAergic interneurons (disinhibition) and a direct inhibitory effect in the presence of gamma-aminobutyric acid-A (GABA(A)) antagonists. The cellular mechanism underlying the inhibitory effect of mu-opioids remains to be determined. In the present study we examine the role of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) in mu-opioid-induced inhibition of NMDA currents in rat hippocampal slices. NMDA-receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) were evoked by stimulating the lateral perforant path and were recorded from dentate granule cells with the use of whole cell voltage-clamp techniques in the presence of the GABA(A) antagonist and a non-NMDA type of glutamate receptor antagonist. Two selective mu-agonists, [N-MePhe3, D-Pro4]-morphiceptin and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin, induced dose-dependent inhibition of NMDA EPSCs in a concentration range of 0.3-10 microM. This inhibitory effect could be completely reversed by the opioid antagonists naloxone or prevented by a selective mu-antagonist cyprodime, but was not affected by removal of Mg2+ from the external perfusion medium. Intracellular application of pertussis toxin (PTX) into the granule cell via whole cell recording pipettes completely prevented mu-opioid-induced reduction in NMDA currents, suggesting that a postsynaptic mechanism involving PTX-sensitive G proteins might be responsible for the inhibitory action of mu-opioids. Further studies were conducted to identify the intracellular messengers that coupled with G proteins and transduced the effect of mu-opioids in granule cells. The adenylate cyclase activator forskolin was found to enhance NMDA-receptor-mediated synaptic responses and to reverse the inhibitory effect of mu-opioids. Sp-cAMPS, a specific PKA activator, also enhanced NMDA EPSCs, whereas the PKA inhibitor Rp-cAMPS reduced NMDA EPSCs and occluded further inhibition of the current by mu-opioids. These findings strongly suggest that NMDA receptor function is subject to the modulation by PKA, and that mu-opioids can inhibit NMDA currents through suppression of the cAMP cascade in the postsynaptic neuron. Combined with our previous findings, the present results also indicate that mu-opioids can modulate NMDA-receptor-mediated synaptic activity in a complex manner. The net effect of mu-opioids in the dentate gyrus may depend on the interplay between its disinhibitory action, which facilitates NMDA-receptor-mediated responses, and its inhibitory action on the cAMP cascade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of cAMP-Dependent Protein Kinase in m-Opioid Modulation of NMDA-Mediated Synaptic Currents

Xie, Cui-Wei and Darrell V. Lewis. Involvement of cAMP-dein recent studies that the function of these ion channels can pendent protein kinase in m-opioid modulation of NMDA-mediated be regulated by intracellular adenosine 3*,5 *-cyclic monosynaptic currents. J. Neurophysiol. 78: 759–766, 1997. We have phosphate (cAMP)-dependent protein kinase (PKA). Dipreviously reported dual effects of m-opioi...

متن کامل

β-Adrenergic Regulation of Synaptic NMDA Receptors by cAMP-Dependent Protein Kinase

To identify the protein kinases regulating synaptic NMDA receptors, as well as the conditions favoring enhancement of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) by phosphorylation, we studied the effects of kinase activation and inhibition in hippocampal neurons. Inhibition of cAMP-dependent protein kinase (PKA) prevented recovery of NMDA receptors from calcineurin-mediated...

متن کامل

Enhanced opioid efficacy in opioid dependence is caused by an altered signal transduction pathway.

Chronic morphine administration induces adaptations in neurons resulting in opioid tolerance and dependence. Functional studies have implicated a role for the periaqueductal gray area (PAG) in the expression of many signs of opioid withdrawal, but the cellular mechanisms are not fully understood. This study describes an increased efficacy, rather than tolerance, of opioid agonists at mu-recepto...

متن کامل

mu-Opioid receptors modulate NMDA receptor-mediated responses in nucleus accumbens neurons.

The nucleus accumbens (NAcc) may play a major role in opiate dependence, and central NMDA receptors are reported to influence opiate tolerance and dependence. Therefore, we investigated the effects of the selective mu-opioid receptor agonist [D-Ala2-N-Me-Phe4,Gly-ol5]-enkephalin (DAMGO) on membrane properties of rat NAcc neurons and on events mediated by NMDA and non-NMDA glutamate receptors, u...

متن کامل

Delta and mu enkephalins inhibit spontaneous GABA-mediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus.

The effects of enkephalins selective for delta and mu opioid receptors on inhibitory postsynaptic currents (IPSCs) mediated by GABA were studied in chloride-loaded CA1 pyramidal neurons in adult rat hippocampal slices. The mu agonist DAMGO (0.1 microM) significantly reduced the amplitudes of evoked monosynaptic IPSCs, recorded following the antagonism of excitatory glutamate receptors, and this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 2  شماره 

صفحات  -

تاریخ انتشار 1997